
International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 659
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

IMPLEMENTATION OF OCP FOR THE ON-CHIP BUS

Mr. K. Santhosh1, Mr. V. Rama Krishna2, Dr. Syed Musthak Ahmed3
PG Student, Dept. of Electronics and Communication Engineering, SR Engineering College, India1

Assistant Professor, Dept. of Electronics and Communication Engineering, SR Engineering College, India2
Professor & H.O.D, Dept. of Electronics and Communication Engineering, SR Engineering College, India3

Abstract—As more and more IP cores are integrated into

an SOC design, the communication flow between IP cores has
increased drastically and the efficiency of the on-chip bus has
become a dominant factor for the performance of a system.
The on-chip bus design can be divided into two parts, namely
the interface and the internal architecture of the bus. In this
paper a well-defined interface standard, the Open Core
Protocol (OCP), has adopted to design the internal bus
architecture. An efficient bus architecture to support most
advanced bus functionalities defined in OCP has been
developed. These functionalities include burst transactions,
lock transactions, pipelined transactions, and out-of- order
transactions. First model and design the on-chip bus with
transaction level modeling for the consideration of design
flexibility and fast simulation speed. Then implement the RTL
models of the bus for synthesis and gate-level simulation.
Experimental results show that the proposed TLM model is
quite efficient for the whole system simulation and the real
implementation can significantly save the communication time.

Keywords — Single transactions, Burst transactions, Lock
transactions, Pipelined transactions, and out-of-order transactions.

I. INTRODUCTION

The On-Chip bus plays a key role in the system-on-a-chip
(SoC) design by enabling the efficient integration of heterogeneous
system components such as CPUs, DSPs, application- specific
cores, memories, and custom logic.

Recently, as the level of design complexity has become
higher, SoC designs require a system bus with high bandwidth to
perform multiple operations in parallel. To solve the bandwidth
problems, An efficient OCP protocol has been developed.

An SOC chip usually contains a large number of IP cores that
communicate with each other through on-chip buses. As the VLSI
process technology continuously advances, the frequency and the
amount of the data communication between IP cores increase
substantially. As a result, the ability of onchip buses to deal with
the large amount of data traffic becomes a dominant factor for the
overall performance. The design of on-chip buses can be divided
into two parts: bus interface and bus architecture. The bus interface
involves a set of interface signals and their corresponding timing
relationship, while the bus architecture refers to the internal
components of buses and the interconnections among the IP cores.
The widely accepted on-chip bus, AMBA AHB, defines a set of
bus interface to facilitate basic (single) and burst read/write
transactions. AHB also defines the internal bus architecture, which
is mainly a shared bus composed of multiplexors. The multiplexer-
based bus architecture works well for a design with a small number
of IP cores. When the number of integrated IP cores increases, the
communication between IP cores also increase and it becomes
quite frequent that two or more master IPs would request data from
different slaves at the same time.

Each channel involves a set of signals. AXI does not restrict
the internal bus architecture and leaves it to designers. Thus
designers are allowed to integrate two IP cores with AXI by either
connecting the wires directly or invoking an in-house bus between
them. The other bus interface protocol is proposed by a non-
profitable organization, the Open Core Protocol – International
Partnership (OCP-IP). OCP is an interface (or socket) aiming to
standardize and thus simplify the system integration problems. It
facilitates system integration by defining a set of concrete interface

(I/O signals and the handshaking protocol) which is independent of
the bus architecture.

Based on this interface IP core designers can concentrate on
designing the internal functionality of IP cores, bus designers can
emphasize on the internal bus architecture, and system integrators
can focus on the system issues such as the requirement of the
bandwidth and the whole system architecture. In this way, system
integration becomes much more efficient. Most of the bus
functionalities defined in AXI and OCP are quite similar. The most
conspicuous difference between them is that AXI divides the
address channel into independent write address channel and read
address channel such that read and write transactions can be
processed simultaneously. However, the additional area of the
separated address channels is the penalty.

In this paper a high-performance on-chip bus design with
OCP as the bus interface has been proposed. OCP has chosen,
because it is open to the public and OCP-IP has provided some free
tools to verify this protocol. The proposed bus architecture features
crossbar/partial-crossbar based interconnect and realizes most
transactions defined in OCP, including 1) single transactions, 2)
burst transactions, 3) lock transactions, 4) pipelined transactions,
and 5) out-of-order transactions. In addition, the proposed bus is
flexible such that one can adjust the bus architecture according to
the system requirement.

The remainder of this paper is organized as follows. The
various advanced functionalities of on-chip buses are

• Pipelined, and
• Out-of-order transactions

A. Burst transactions

The burst transactions allow the grouping of multiple
transactions that have a certain address relationship, and can be
classified into multi-request burst and single- request burst
according to how many times the addresses are issued. Fig.1 shows
the two types of burst read transactions. The multi-request burst as
defined in AHB is illustrated in Fig.1(a) where the address
information must be issued for each command of a burst
transaction (e.g., A11, A12, A13 and A14).This may cause some
unnecessary overhead. In the more advanced bus architecture, the
single-request burst transaction is supported. As shown in Fig.1(b),
which is the burst type defined in AXI, the address information is
issued only once for each burst transaction. In the proposed bus
design both burst transactions are supported such that IP cores with
various burst types can use the proposed on-chip bus without
changing their original burst behaviour.

B. Lock transactions

Lock is a protection mechanism for masters that have low bus
priorities. Without this mechanism the read/write transactions of
masters with lower priority would be interrupted whenever a
higher-priority master issues a request. Lock transactions prevent
an arbiter from performing arbitration and assure that the low

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 660
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

priority masters can complete its granted transaction without being
interrupted.

C. Pipelined transactions (outstanding transactions)

Fig. 2(a) and 2(b) show the difference between non-pipelined
and pipelined (also called outstanding in AXI) read transactions. In
Fig. 2(a), for a non-pipelined transaction a read data must be
returned after its described in Section 2. Section 3 details the
hardware architecture of the proposed bus. Section 4 gives the
experimental results which show the efficiency on both simulation
speed and data communication. Conclusions are then drawn in
Section 5. corresponding address is issued plus a period of latency.
For example, D21 is sent right after A21 is issued plus t. For a
pipelined transaction as shown in Fig. 2(b), this hard link is not
required. Thus A21 can be issued right after A11 is issued without
waiting for the return of data requested by A11 (i.e., D11-D14).

D. Out-of-order transactions

The out-of-order transactions allow the return order of
responses to be different from the order of their requests. These
transactions can significantly improve the communication
efficiency of an SOC system containing IP cores with various
access latencies as illustrated in Fig. 3. In Fig. 3(a) which does not
allow out-of-order transactions, the corresponding responses of
A21 and A31 must be returned after the response of A11. With the
support of out of-order transactions as shown in Fig. 3(b), the
response with shorter access latency (D21, D22 and D31) can be
returned before those with longer latency (D11-D14) and thus the
transactions can be completed in much less cycles.

Fig.3. Out-of-order transactions

III. ON-CHIP BUS DESIGN
The architecture of the proposed on-chip bus is illustrated in

Fig. 4, where an example with two masters and two slaves is
shown. A crossbar architecture is employed such that more than
one master can communicate with more than one slave
simultaneously. If not all masters require the accessing paths to all
slaves, partial crossbar architecture is also allowed.

Basically OCP has the address is of 13bits, data is of 8bits,
control signal is of 3bits and burst is of integer type.

Fig.4. OCP BLOCK DIAGRAM

A. Arbiter

In traditional shared bus architecture, resource contention
happens whenever more than one master requests the bus at the
same time. For a crossbar or partial crossbar architecture, resource
contention occurs when more than one master is to access the same
slave simultaneously. In the proposed design each slave IP is
associated with an arbiter that determines which master can access
the slave.

B. Decoder
Since more than one slave exists in the system, the decoder

decodes the address and decides which slave return response to the

target master. In addition, the proposed decoder also checks
whether the transaction address is illegal or nonexistent and
responses with an error message if necessary.

C. Multiplexer

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 661
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

A multiplexer is used to solve the problem of resource
contention when more than one slave returns the responses to the
same master. It selects the response from the slave that has the
highest priority.

IV. RESULTS

The proposed design is coded in VHDL language and the
8kbit memory (213= 8192bits = 8kbits) is used in the slave side in
order to verify the protocol functionality. The System will give the
inputs to OCP Master during Write operation and receive signals
from OCP Slave during Read operation. The main blocks of the
proposed bus architecture are described below.

Fig.6 Burst transaction

Fig.7 Out of order Transaction

Simulated using Xilinx ISE tool. The simulated waveforms
for simple transactions, burst transactions, pipelined transactions
and out of order transactions are shown in following figures..

V. CONCLUSION

This project work presents the OCP (Open Core Protocol)
design which acts as an interface between two different IP cores. In
this work, initially the investigation on the OCP is carried out and
the basic commands and its working are identified based on which
the signal flow diagram and the specifications are developed for
designing the OCP using VHDL. Cores with OCP interfaces and
OCP interconnect systems enable true modular, plugand-play
integration. The simulation result shows that the communication
between different IP cores using OCP is proper. Based on the result
obtained, the burst extension is seen to automate the address
generation. The initial address alone is provided to the protocol.

REFERENCES
[1] I Advanced Microcontroller Bus Architecture (AMBA)

Specification Rev 2.0 & 3.0, http://www.arm.com.
[2] Open Core Protocol (OCP) Specification,

http://www.ocpip.org/home.
[3] Choi, J.-T. Kong, S.-K. Eo, “Fast and Accurate Transaction

Level Modeling of an Extended AMBA2.0 Bus Architecture,”
Design, Automation, and Test in Europe, pages 138-139,
2005.

[4] Kim Y.-T., T. Kim, Y. Kim, C. Shin, E.-Y. Chung, K.-M. Lo
C.-K. and R.-S. Tsay, “Automatic Generation of Cycle
Accurate and Cycle Count Accurate Transaction Level Bus
Models from a Formal Model,” Asia and South Pacific Design
Automation Conference, pages 558-563, 2009.

[6] Schirner.G and R. Domer, “Quantitative Analysis of
Transaction Level Models for the AMBA Bus,” Design,
Automation, and Test in Europe, 6 pages, 2006.

IJSER

http://www.ijser.org/
http://www.arm.com/

