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Abstract—As more and more IP cores are integrated into 

an SOC design, the communication flow between IP cores has 
increased drastically and the efficiency of the on-chip bus has 
become a dominant factor for the performance of a system. 
The on-chip bus design can be divided into two parts, namely 
the interface and the internal architecture of the bus. In this 
paper a well-defined interface standard, the Open Core 
Protocol (OCP), has adopted to design the internal bus 
architecture. An efficient bus architecture to support most 
advanced bus functionalities defined in OCP has been 
developed. These functionalities include burst transactions, 
lock transactions, pipelined transactions, and out-of- order 
transactions. First model and design the on-chip bus with 
transaction level modeling for the consideration of design 
flexibility and fast simulation speed. Then implement the RTL 
models of the bus for synthesis and gate-level simulation. 
Experimental results show that the proposed TLM model is 
quite efficient for the whole system simulation and the real 
implementation can significantly save the communication time. 
 
Keywords — Single transactions, Burst transactions, Lock 
transactions, Pipelined transactions, and out-of-order transactions. 

 
I.   INTRODUCTION 

The On-Chip bus plays a key role in the system-on-a-chip 
(SoC) design by enabling the efficient integration of heterogeneous 
system components such as CPUs, DSPs, application- specific 
cores, memories, and custom logic.  

Recently, as the level of design complexity has become 
higher, SoC designs require a system bus with high bandwidth to 
perform multiple operations in parallel. To solve the bandwidth 
problems, An efficient OCP protocol has been developed. 

An SOC chip usually contains a large number of IP cores that 
communicate with each other through on-chip buses. As the VLSI 
process technology continuously advances, the frequency and the 
amount of the data communication between IP cores increase 
substantially. As a result, the ability of onchip buses to deal with 
the large amount of data traffic becomes a dominant factor for the 
overall performance. The design of on-chip buses can be divided 
into two parts: bus interface and bus architecture. The bus interface 
involves a set of interface signals and their corresponding timing 
relationship, while the bus architecture refers to the internal 
components of buses and the interconnections among the IP cores. 
The widely accepted on-chip bus, AMBA AHB, defines a set of 
bus interface to facilitate basic (single) and burst read/write 
transactions. AHB also defines the internal bus architecture, which 
is mainly a shared bus composed of multiplexors. The multiplexer-
based bus architecture works well for a design with a small number 
of IP cores. When the number of integrated IP cores increases, the 
communication between IP cores also increase and it becomes 
quite frequent that two or more master IPs would request data from 
different slaves at the same time. 

Each channel involves a set of signals. AXI does not restrict 
the internal bus architecture and leaves it to designers. Thus 
designers are allowed to integrate two IP cores with AXI by either 
connecting the wires directly or invoking an in-house bus between 
them. The other bus interface protocol is proposed by a non-
profitable organization, the Open Core Protocol – International 
Partnership (OCP-IP). OCP is an interface (or socket) aiming to 
standardize and thus simplify the system integration problems. It 
facilitates system integration by defining a set of concrete interface 

(I/O signals and the handshaking protocol) which is independent of 
the bus architecture. 

Based on this interface IP core designers can concentrate on 
designing the internal functionality of IP cores, bus designers can 
emphasize on the internal bus architecture, and system integrators 
can focus on the system issues such as the requirement of the 
bandwidth and the whole system architecture. In this way, system 
integration becomes much more efficient. Most of the bus 
functionalities defined in AXI and OCP are quite similar. The most 
conspicuous difference between them is that AXI divides the 
address channel into independent write address channel and read 
address channel such that read and write transactions can be 
processed simultaneously. However, the additional area of the 
separated address channels is the penalty. 

In this paper a high-performance on-chip bus design with 
OCP as the bus interface has been proposed. OCP has chosen, 
because it is open to the public and OCP-IP has provided some free 
tools to verify this protocol. The proposed bus architecture features 
crossbar/partial-crossbar based interconnect and realizes most 
transactions defined in OCP, including 1) single transactions, 2) 
burst transactions, 3) lock transactions, 4) pipelined transactions, 
and 5) out-of-order transactions. In addition, the proposed bus is 
flexible such that one can adjust the bus architecture according to 
the system requirement. 

The remainder of this paper is organized as follows. The 
various advanced functionalities of on-chip buses are  

• Pipelined, and 
• Out-of-order transactions 

 
A.  Burst transactions 

The burst transactions allow the grouping of multiple 
transactions that have a certain address relationship, and can be 
classified into multi-request burst and single- request burst 
according to how many times the addresses are issued. Fig.1 shows 
the two types of burst read transactions. The multi-request burst as 
defined in AHB is illustrated in Fig.1(a) where the address 
information must be issued for each command of a burst 
transaction (e.g., A11, A12, A13 and A14).This may cause some 
unnecessary overhead. In the more advanced bus architecture, the 
single-request burst transaction is supported. As shown in Fig.1(b), 
which is the burst type defined in AXI, the address information is 
issued only once for each burst transaction. In the proposed bus 
design both burst transactions are supported such that IP cores with 
various burst types can use the proposed on-chip bus without 
changing their original burst behaviour. 

 
 
B.   Lock transactions 

Lock is a protection mechanism for masters that have low bus 
priorities. Without this mechanism the read/write transactions of 
masters with lower priority would be interrupted whenever a 
higher-priority master issues a request. Lock transactions prevent 
an arbiter from performing arbitration and assure that the low 
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priority masters can complete its granted transaction without being 
interrupted. 
 
C.   Pipelined transactions (outstanding transactions) 

Fig. 2(a) and 2(b) show the difference between non-pipelined 
and pipelined (also called outstanding in AXI) read transactions. In 
Fig. 2(a), for a non-pipelined transaction a read data must be 
returned after its described in Section 2. Section 3 details the 
hardware architecture of the proposed bus. Section 4 gives the 
experimental results which show the efficiency on both simulation 
speed and data communication. Conclusions are then drawn in 
Section 5. corresponding address is issued plus a period of latency. 
For example, D21 is sent right after A21 is issued plus t. For a 
pipelined transaction as shown in Fig. 2(b), this hard link is not 
required. Thus A21 can be issued right after A11 is issued without 
waiting for the return of data requested by A11 (i.e., D11-D14). 

 

 
D. Out-of-order transactions  

The out-of-order transactions allow the return order of 
responses to be different from the order of their requests. These 
transactions can significantly improve the communication 
efficiency of an SOC system containing IP cores with various 
access latencies as illustrated in Fig. 3. In Fig. 3(a) which does not 
allow out-of-order transactions, the corresponding responses of 
A21 and A31 must be returned after the response of A11. With the 
support of out of-order transactions as shown in Fig. 3(b), the 
response with shorter access latency (D21, D22 and D31) can be 
returned before those with longer latency (D11-D14) and thus the 
transactions can be completed in much less cycles. 

 

Fig.3. Out-of-order transactions 
 

III. ON-CHIP BUS DESIGN 
The architecture of the proposed on-chip bus is illustrated in 

Fig. 4, where an example with two masters and two slaves is 
shown. A crossbar architecture is employed such that more than 
one master can communicate with more than one slave 
simultaneously. If not all masters require the accessing paths to all 
slaves, partial crossbar architecture is also allowed. 

Basically OCP has the address is of 13bits, data is of 8bits, 
control signal is of 3bits and burst is of integer type.  

 

Fig.4.  OCP BLOCK DIAGRAM 

 
A.  Arbiter 

In traditional shared bus architecture, resource contention 
happens whenever more than one master requests the bus at the 
same time. For a crossbar or partial crossbar architecture, resource 
contention occurs when more than one master is to access the same 
slave simultaneously. In the proposed design each slave IP is 
associated with an arbiter that determines which master can access 
the slave. 

 

B.  Decoder 
Since more than one slave exists in the system, the decoder 

decodes the address and decides which slave return response to the 

target master. In addition, the proposed decoder also checks 
whether the transaction address is illegal or nonexistent and 
responses with an error message if necessary. 

 
C.  Multiplexer 
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A multiplexer is used to solve the problem of resource 
contention when more than one slave returns the responses to the 
same master. It selects the response from the slave that has the 
highest priority. 

 
IV. RESULTS 

The proposed design is coded in VHDL language and the 
8kbit memory (213= 8192bits = 8kbits) is used in the slave side in 
order to verify the protocol functionality. The System will give the 
inputs to OCP Master during Write operation and receive signals 
from OCP Slave during Read operation. The main blocks of the 
proposed bus architecture are described below. 

 
 

Fig.6 Burst transaction 

 

Fig.7 Out of order Transaction 

Simulated using Xilinx ISE tool. The simulated waveforms 
for simple transactions, burst transactions, pipelined transactions 
and out of order transactions are shown in following figures.. 

 
V.   CONCLUSION 

This project work presents the OCP (Open Core Protocol) 
design which acts as an interface between two different IP cores. In 
this work, initially the investigation on the OCP is carried out and 
the basic commands and its working are identified based on which 
the signal flow diagram and the specifications are developed for 
designing the OCP using VHDL. Cores with OCP interfaces and 
OCP interconnect systems enable true modular, plugand-play 
integration. The simulation result shows that the communication 
between different IP cores using OCP is proper. Based on the result 
obtained, the burst extension is seen to automate the address 
generation. The initial address alone is provided to the protocol. 
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